Evaluating the Effectiveness of Fault Tolerance in Replicated Database
Management Systems

Maitrayi Sabaratnam, Maitrayi.Sabaratham@idi.ntnu.no
Norwegian University of Science & Technology(NTNU)

@ystein Torbjgrnsen, ClustRa AS
Oystein.Torbjornsen@clustra.com

Svein-Olaf Hvasshovd, NTNU
Svein-Olaf.Hvasshovd@idi.ntnu.no

Abstract

Database management systems (DBMS) achieve high
availabilityand fault tolerance usually by replication. How-
ever, fault tolerance does not come for free. Therefore,
DBMSs serving critical applicationswith real time require-
ments must find a tradeoff between fault tolerance cost and
performance. The purpose of thisstudy is two-fold. It eval-
uates the effectiveness of DBMSfault tolerance in the pres-
ence of corruptionin database buffer cache, which poses se-
rious threat to the integrity requirement of the DBMSs.

Thefirst experiment of this study evaluates the effective-
ness of fault tolerance, and the fault impact on database
integrity, performance, and availability on a replicated
DBMS ClustRa[6], in the presence of software faults that
corrupt the volatile data buffer cache. The second experi-
ment i dentify the weak data structure componentsinthe data
buffer cache that give fatal consequences when corrupted,
and suggest the need for some form of guarding them indi-
vidually or collectively.

1. Introduction

Increased global trade and travel demands that services
provided by database applications, for example, in bank-
ing and telecommunication, are available 24x7x52 hours an
year, in addition to the traditional requirement of preserving
the integrity of the user data. In other words, the responsibil-
ity of masking both hardware and software failures, mainte-
nance activities, and other natural or man-made catastrophes
lies on the DBMS software.

These requirements are fulfilled to a great extent, by in-
troducing fault tolerance. Fault tolerance can be achieved
by redundancy, e.g., by a replicated DBMS. A replicated
DBMS runs DBMS processes on different computers in a
coordinated way. A computer running such a DBMS pro-
cess is called a node. When a fault is detected in one node,

the node is recovered. If this is not possible, the system will
reconfigure such that the faulty node is excluded from the
system configuration and its functionality is taken over by
one of the replica nodes. Error detection, recovery, and re-
configuration must be done online automatically in order to
achieve high availability .

Integrating fault tolerance in DBMSs as mentioned above
need redundant hardware and enhanced software for effec-
tive fault detection, recovery, and reconfiguration. The en-
hanced software containing redundant execution of transac-
tions and rigorous checks for error detection not only in-
creases the software development cost, butalso increases the
DBMS?’s transaction response time. Therefore, the DBMS
products serving critical applications with hard or soft real
time requirements must find a tradeoff between fault toler-
ance and performance.

Though replication solves many problems regarding de-
pendability, it is not a panacea. Replication enables con-
trolled maintenance of hardware and software on a com-
puter running a DBMS software, without compromising the
DBMS availability. Further, replication limits the loss of
data or DBMS unavailability due to some failures caused by
operator errors or natural catastrophes. Still, ithas some lim-
itations. It is difficult to achieve complete error detection or
fault-free software/hardware. Two situations that can give
fatal consequences on availability and integrity are: 1) Si-
multaneous failure of all DBMS replicas, due to either fa-
tal error propagation or accidental concurrent errors, mak-
ing the system unavailable, 2) User data corruption (though
the definition of fatal failure varies according to the require-
ments of the applications).

Software reliability has not kept pace with the hardware
reliability over the past years. In the present systems, soft-
ware is the bottleneck in achieving dependability, due to the
complexity and the human factor involving in it. The soft-
ware faults causing overlay errors are hard to trace and there
impact are much higher than the regular errors [10].

The main goal of the DBMSs is to maintain the integrity

www.manaraa.com

of the database image. DBMSs cache parts (or whole) of the
database image in data buffer area before processing, and
later flush the processed data to a persistent medium in or-
der to preserve the durability of the data. Residual hardware
or software faults may result in corrupting the buffer area.
In addition, DBMSs have increasingly started to integrate
special-purpose application code in order to give extensibil-
ity and flexibility to applications. This application code is
allowed to access data buffer area. This makes the buffer
area vulnerable to get corrupted by unintentional application
codes. Among the possible faults occur in a DBMS, one of
the most interesting and important class of faults is the one
that corrupt the buffer cache, since it is the one that could
give a serious blow to the integrity requirement.

Gaining an insight in 1) situations that give fatal conse-
quences, 2) how can they be masked, and 3) what is the over-
head for such masking is valuable in building fault tolerant
DBMSs.

Even though many DBMSs being built on shared-nothing
architecture include fault tolerance by replication in their
systems, e.g., Tandem Remote Duplicate Database Facility,
Sybase Replication Server, Oracle7 Symmetric Replication
Facility , IBM Remote Site Recovery, and Informix Online
Server, there are very few studies highlighting the above
mentioned aspects.

Ng and Chen [9] integrated reliable memory for caching
data into Postgress DBMS in three different ways and used
fault injection to evaluate them. Chillarege [2] studied the
failure characteristics of the commercial transaction pro-
cessing system, IBM’s IMS, Version 1.3. These studies were
performed on centralized database systems.

Our study improves the state of the art in the following
ways:

Itextends the idea of evaluating fault impact further to the
next generation DBMSs, which are distributed, and repli-
cated in order to achieve fault tolerance and thus, having in-
creased complexity. Introduction of fault tolerance requires
that the evaluation of fault impact incorporates the issues re-
lated to fault tolerance, such as, failure masking by replicas,
error propagation to replicas, and so on. Inaddition, we con-
centrate on the effect of faults on the integrity of user data.

Our study reconciles concepts from separate research
communities, fault tolerant computing systems and database
systems. It applies fault injection to evaluate different cov-
erage and performance parameters in a replicated DBMS
context.

It introduces a generic fault injection method that can
be adopted by any DBMS from the design/prototype phase
throughout the development and testing phase to evaluate
the effectiveness of the fault tolerance mechanisms and the
performance tradeoff. This early evaluation enables the de-
velopment team to improve design decisions as well as to
detect and correct design faults at an earlier stage. Imple-

mentation of this method needs little effort since it exploits
the existing client interface of a DBMS. Fault injection takes
a few instructions and thus, the intrusion is minimal. In this
experiment, this method is applied to the data structure in the
data buffer area. This method can also be applied to other
DBMS specific structures like log buffer, locks, message,
etc. Data buffers are chosen because of their crucial role in
DBMS integrity as mentioned earlier.

Different error scenarios are created by injecting errors
intoatest DBMS, ClustRa- version 1.1. The impact of these
errors is analyzed and the performance degradation, the time
the system is in reduced fault tolerance level, and cover-
age statistics are collected. Section 2 describes the testbed
where the experiment was conducted. Section 3 describes
the experiment setup and process. Section 4 analyzes the re-
sults. Section 5 contains a summary, conclusion, and future
work.

2. The Testbed

ClustRa Architecture

[
[A
o

Disaster
Unit-1

Disaster
Unit-2

Figure 1. ClustRa architecture.

ClustRa provides a highly available, high performance,
and fault tolerant DBMS platform for applications requiring
soft real-time response time, e.g., applications in telecom-
munication. It is a replicated DBMS with a shared-nothing
architecture, running on off-the-shelf UNIX work-stations.
A ClustRa node is a work station running a ClustRa pro-
cess. Nodes are grouped into different disaster units (having
independent failure modes) connected by duplicated com-
munication lines with high bandwidth. Duplication is used
at process, data, and communication levels in order to min-
imize service unavailability and data loss, see Figure 1.

Data is partitioned into fragments and each fragment is
replicated into primary and hot standby copies. They
are placed in different nodes belonging to different disas-
ter units, such that, the union of replicas in each disaster
unit makes the whole database. Figure 2 shows how the
data is partitioned and replicated among 4 nodes and 2 dis-
aster units. Assume that the data is partitioned into 4 frag-
ments, Fy, Py, F3, and Fy. Each fragment is replicated
into two replicas, e.g., /4 into R-111 and R-112 which are

www.manaraa.com

placed in Node-11 and Node-12 belonging to DisasterUnit-
1 and DisasterUnit-2 respectively, and so on. Counterpart
nodes are those nodes which contain the copies of the same
data. E.g., in Figure 2, Node-11’s counterpart is Node-12
and Node-21’s counterpart is Node-22. Failures are handled
at node granularity, i.e., a failure causes the ClustRa process
to restart at that node it resides.

Active nodes contain data while spare nodes do not.
Spare nodes are on-line, can serve as coordinators for client
transactions. In case of an active node failure, a spare node
from the same disaster unit can take over the failed node’s
role, if the failed node does not get repaired within a spec-
ified time. This reduces the time window the system func-
tions without replication.

Each node runs a ClustRa process and a supervisor pro-
cess. The latter manages (starts, stops, etc) the ClustRa pro-
cess as well as sending heart beats to its neighbor nodes. A
node is pronounced as dead by its neighbor nodes, if it does
not send a heart beat within a timeout period. This mes-
sage is spread to all nodes and a virtual partition manage-
ment protocol is used to maintain a consistent set of avail-
able nodes and services[6]. A primary-hot standby coordi-
nator process pair coordinates a transaction among primary-
hot standby participant process pairs, using a 2-phase com-
mit protocol [4]. Coordinator and participant processes are
executed as light-weightthreads within the ClustRa process.
Transactions are executed atomically in a 2-safe manner,
i.e., they are reflected in both the primary and hot standby
before commit or not reflected at all.

Replica-111 Replica-112

Replica-211 Replica-212

Node-11 Node-12

Replica-321 Replica-322

Replica-421 Replica-422

Node-21 Node-22

Spare node Spare node

Disaster Unit-1 Disaster Unit-2

Figure 2. Data distribution in ClustRa.

ClustRa’s Fault Tolerance Mechanisms: ClustRa
masks all single node and single communication line fail-
ures. Different consistency checks are used to detect errors.
Detected errors are categorized into three levels: normal,

user, and serious. The first two error levels allow the system
to continue functioning. User level errors do not harm the
database integrity, therefore, the DBMS does not take any
action other than informing the user about the error. Detec-
tion of serious errors makes ClustRa be fail silent [4].

A primary node failure is masked by its counterpart hot
standby by taking over the primary role. The failure is de-
tected by the missing heart-beat. During the takeover, some
response to client transactions may time out for a fraction of
a second, depending on the heart beat timeout. At the same
time, the failed process is restarted by the supervisor process
and an online repair is undertaken [1]. When the node (or
eventually the spare) finishes repair, it takes back the pri-
mary role in order to balance the load.

3. Fault Injection Experiment

In complex systems like DBMSs, it is difficult to trace
faults causing failures and system crashes. This is partly be-
cause the crash may leave incomplete or destroyed logs or
the error has long latency. It is especially difficult in large,
complex, parallel systems where the failure scenarios can
not be reproducible since the order of the external events is
not reproducible. Fault injection is used in order to identify
and understand potential failures, their impact, and the sys-
tem’s ability to mask them, before the system is being op-
erational, i.e., before the failure data from the field is avail-
able. Different hardware and software implemented faultin-
jection (SWIFI) techniques are described in the literature.
An overview of fault injection techniques and some tools is
described in [5].

This section describes the experiment setup, underlying
fault model used in the experiment, workload and fault in-
jection process.

3.1. Testbed

A four-node ClustRa cluster is used in this experiment.
Each disaster unit consists of one active and one spare node.
A node is a Sun Ultra work station with a 200 MHz Ultra-
SPARC processor, running ClustRa v.1.1, as illustrated in
Figure 4.

3.2. Fault Model

Extensive field error reports and surveys are not avail-
able in young products like ClustRa, therefore we have to
base our fault model on studies conducted in operating sys-
tems and databases [10, 11, 8]. Common software faults
causing overlay errors are: assignment faults: e.g., code line
PreviousLog = tmp; instead of PreviousTrLog = tmp; cor-
rupts both PreviousLog and PreviousTrLog variables, ini-
tialization faults: wrong or forgotten initialization of vari-

www.manaraa.com

ables, wild pointers: assignment or initialization faults to
variables pointing memory locations, copy overflow: pro-
gram copies bytes past end of buffer, type mismatch: a field
is added to a structure, but all of the codes using that struc-
ture have not been modified to reflect the change, memory
allocation: using a memory area after it has been freed, and
undefined state: the system goes into a state unanticipated
by the program may cause overlay errors since the invariant
does not hold in this state.

The fault model that is relevant for our study is the soft-
ware faults causing transient overlay errors that corrupt the
data buffer area of the shared memory. Though overlay er-
rors may corrupt any part of code or data, the ultimate (di-
rect or propagated) corruption that affects the customers are
those occur in database image. Since this corruption must
be prevented in order to achieve the integrity goal of the
DBMSs (see Sec. 1), the interest of this work lies in study-
ing system behavior given that a corruption is occurred in
the data buffer area. Since this corruption is a small sub-
set of the errors resulting from the software faults causing
overlays, we inject errors directly in the data buffer area in
order to accelerate the database corruption, instead of inject-
ing faults that result into direct or indirect corruption in data
buffer area.

The question arises here is the validity of the mapping be-
tween the representative faults mentioned in the fault model
and the errors being injected in this way. Christmansson and
Chillarege [3] have proposed answers to the question of gen-
erating representative error sets that can be used in fault in-
jection experiments, based on the field defect data for IBM
OS. They address issues like what errors should be injected
in which software module and when the injection should
take place.

3.3. Workload Generator

The main purpose of the workload generator is to create
an environment that can activate the error, i.e., it is accessed,
propagated, or it crashes the system. The workload gener-
ator starts three parallel transaction clients (TC). Each TC
sends single-tuple transactions to the DBMS, i.e., a transac-
tion performs only one of the following operations on a sin-
gle data record: insert, delete, update, or read. A TC is al-
lowed to function 1) until it executes a maximum of 10,000
transactions sent in a back-to-back manner or 2) for a max-
imum of 300 seconds. 55% of the transactions are updates,
20% are read, and the rest is distributed among insert and
delete such that at equilibrium, 75% of the inserted data ex-
ist. The size of the database is 4 MB at equilibrium. The data

LIn[2], Chillarege inject overlay errors by overwriting a randomly cho-
sen page of the real storage with hexadecimal ’FF’s in order to accelerate an
experiment studying the failure characteristics of the commercial transac-
tion processing system, IBM’s IMS, Version 1.3., instead of injecting faults.

is divided into 3 tables, each is partitioned into 2 fragments,
and each fragment is replicated. A data record consists of
a primary key of type integer and a string type having vari-
able length of maximum 512 bytes. Access to a data record
is uniformly distributed, having no hot-spots. The workload
is typical for telecommunication applications, for e.g., those
setting up calls. Further, the transaction load is selected in
order to exploit the system resources like CPU at the server
to their maximum. The workload is designed to accelerate
the access of a corrupted location by reducing the database
size and increasing the number of transactions accessing the
corrupted data.

3.4. Experiment Process

There are two experiments conducted. In the first ex-
periment, errors are injected into a random area of the data
buffer. This is referred to as error type DBbuffer in Sec.4.
Start position for the corruption is uniformly distributed
over the data buffer area. Number of bytes being corrupted
is based on the study done by [10], but adjusted according
to our software, platform, and experience. The distribution
of number of bytes being corrupted is: 60% 1-4 bytes, 35%
5-1024 bytes, and 5% 1-9 KB.

This kind of general corruption does not give any specific
information about 1) the data structure components lack-
ing validity checks or 2) the causal relationship between the
error source and the severity of the error impact, in other
words, which particular component in the data buffer gives
worst impact. If the answer to these questions are known,
the weak component can be guarded with better detection
techniques to limitthe error impact. Therefore, we introduce
specific errors in the second experiment. Here, we inject
specific errors into particular components of the data struc-
ture covering the data buffer area.

block
head

block
data

NextLevelPointer

Récord—1 IEC’]

—ord-2 I,l R*ord%l’

data
block| Pointer

record record
head data

Figure 3. a) Structure of the data buffer area
in use: index and data blocks are arranged in
atree structure. b) the layout of a block.

Data buffer area consists of used and unused data blocks.
In order to accelerate the failures, we inject faults into the
used area. Blocks in the used area are arranged in a B-tree
structure, as shown in Figure 3. Each block has a header part
and a data part. The data part consists of data records. The

www.manaraa.com

header part of a block consists of the following administra-
tive data: block identifier, number of records in the block ,
number of free bytes in the block, high water mark - the posi-
tion where a new record will be inserted, and a pointer to its
next block (found in data blocks only). A record also has an
administrative part and data part. Administrative part con-
tains: a key descriptor describing the number of fields used
to identify a record uniquely and an administrative descrip-
tor stating whether a record has the knowledge about the
log record that contains information about the last change
a transaction made on the record. Data part of an index
record contains access path to a block in next level. Data
part of a data or leaf block contains user data. In the fol-
lowing sections, errors overlaid on these components are re-
ferred to as error types: Blockld, NoOfRecords, NoOfBytes-
Free, HighWater, NextPointer, KeyDescriptor, AdmDescrip-
tor, NextLevel Pointer, and UserData.

ClustRa
Node-11

/

IIEHHHHHEHHHH /
client \K / Fault Injectio
/ client

/[chsem s
ClustRa
Node-22
client

Figure 4. The experiment setup (ClustRa

Node-11 is zoomed). Initially, Node-11 and

Node-12 are active, and Node-21 and Node-
22 are spare.

Transaction
ClustRa client
Node-21

An experiment run consists of starting the DBMS and the
workload generator, injecting an error, stopping the DBMS,
and analyzing the logs, and is conducted by an experiment
manager (EM). ClustRa processes are started on four Clus-
tRa nodes as illustrated in Figure 4, two spare nodes and two
active nodes. Active node-11 has primary data and node-12
has hot standby data. The workload generator is started 240
seconds after the DBMS is started, it is allowed to stabilize
for 30 seconds, and then the fault injector is called with one
of the error types mentioned above with relevant parameters.
The workload is maintained for nearly 300 seconds. Then,
the DBMS is requested to give the contents of the database.
The DBMS is stopped after 300 seconds. In the analysis
phase, the database content is compared with the database
content maintained by the TC in order to see any discrep-

ancy. Besides, each client checks each response delivered
by the DBMS against its internal database for each transac-
tion. The DBMS log containing repair information is also
analyzed and the repair time is calculated.

There were 725 runs conducted in the first experiment, 50
runs for each specific error type in the second experiment,
and 50 error-free or golden runs, totaling 1225 runs. The
clock time used by each run is around fifteen minutes, giv-
ing a total of 306 hours. In order to create different fault sce-
narios as possible, each run was started with a different seed
such that the choice of a block or position to be injected and
the injection point in time varied. Therefore, the experiment
did not evaluate the repeatability of the error impact.

The measures from the golden runs are used to evaluate
the effects of fault tolerance mechanisms on performance
in the presence of errors. In order to make the golden runs
comparable to runs with faultinjection, a golden run also ex-
ecuted the fault injection code, but overlaid an unused loca-
tion instead.

3.5. Fault Injector

The fault injector (FI) injects error types mentioned in
Section 3.4 intothe data buffer area. The faultinjector client
(FIC) can also be started on a non-ClustRa node like a TC.
FIC is started at a point in time distributed uniformly be-
tween 30-60 seconds after the workload generator is started.
FIC isgiven the error type and the relevant parameters by the
EM. For example, if the error type is Blockld, then the pa-
rameters will be a seed value used by EM to repeat the run if
necessary, a data table identifier, and a flag saying whether
the chosen buffer block is an index block, a data block, or
any of them. FIC then sends a message containing the fault
injection request together with the parameters. The DBMS
server interface is extended to handle requests from a FIC.
At the receipt of this message, this request is handled like
the requests from the TCs. To process this request a small
piece of software code is added to the DBMS server to ac-
cess amemory address or data buffer component as specified
by the parameters and overlay a random bit pattern accord-
ingly. This takes very few machine instructions. In addition,
comes one extra message-receiving cost per run. In order to
enhance the analysis of the fault impact, ClustRa is run on
trace-mode, i.e., it wrote information, such as, node crash
detection time and the outcome of restart (success or not),
and the restart finishing time to a trace file. This may result
in some timing difference in the execution.

4. Analysis of Results

This section evaluates the faulttolerance of ClustRa from
the experiment results. Two aspects of fault tolerance are

www.manaraa.com

Error #errors # failures
Type detected | masked
Exp-1:

DBbuffer 442(61%) | 431 (97.5%)
Exp-2:

NextLevelPointer | 50 48
UserData 0 -
KeyDescriptor 48 47
AdmDescriptor 16 16
Blockld 50 50
NextPointer 25 24
NoOfRecords 50 49
NoOfBytesFree 1 1
HighWater 39 39

Total 279(62%) | 274 (98%)

Table 1. Error coverage.

evaluated: effectiveness of error detection and efficiency of
recovery.

4.1, Effectiveness of Error Detection

Effectiveness of error detection is measured by error cov-
erage and fatal failures.

Error Coverage: Table 1 shows the coverage statistics.
The first column shows the number of errors that are de-
tected by the system and the error detection coverage - de-
tected errors as a percentage of the total injected errors. De-
tection of an error causes the node to crash and a node fail-
ure is masked by a hot standby takeover. The second column
shows the number of successful masking and coverage. In
the first experiment, 61% of the 725 injected errors were de-
tected. 97.5% of the detected failures were masked, except
for the double failures, where both active nodes crashed al-
most simultaneously within a very short interval (see Table 2
for double failure statistics). The spare nodes cannot take
over in this case because there is no available active node to
copy data from online. In the second experiment, the corre-
sponding figures were: 62% and 98%.

Locations UserData and NoOfBytesFree show very low
detection, 0 and 1 cases respectively. Low error detection
means that the erroneous locations were either not accessed,
overwritten, or read without being tested. The experiment
did not have enough instrumentation to verify whether an er-
roneous location is accessed or not, except from the failure
manifestations and thus, cannot differentiate the errors over-
written and the dormant ones. However, the observed fatal
failures of Table 2 shows clearly that the UserData is read
without tested and contribute to severe integrity loss.

Fatal Failures: Double failuresand user data corruption

Error #double | #data
Type failure corruption
Exp-1:

DBbuffer 11(1.5%) | 11(1.5%)
Exp-2:

NextLevelPointer | 2 0
UserData 0 50
KeyDescriptor 1 0
AdmbDescriptor 0 1
Blockld 0 0
NextPointer 1 0
NoOfRecords 1 1*
NoOfBytesFree 0 0
HighWater 0 7

Total 5(1%) 59(13%)

Table 2. Fatal failures. Data marked by '* is
explained in Fatal Failures section.

are defined as fatal failures from the severity of their conse-
quences. The former makes the DBMS unavailable until the
data is restored from a backup and also causes the recently
committed transactions to be lost. The latter affects the in-
tegrity of DBMSs. Table 2 shows that there were 11 double
failures in the first experiment (1.5%) and 5 double failures
(1%) in the second one. Five of these 16 cases were traced
to two design faults in the recovery mechanism, which were
accidentally provoked on the recovering node and its coun-
terpart almost simultaneously. The rest might be resulted
from error propagation, but could not be verified.

User data corruption is detected by the client by compar-
ing the DBMS reply with its internal database. In the first
experiment, 11 runs shows user data corruption. In the sec-
ond experiment, the corresponding figure was 59. In the sec-
ond experiment, the majority (50) comes from the UserData
corruptionsince User Data have no detection mechanism as-
sociated with it. Apart from that, there were only 9 runs
found with data corruption for the rest of 400 runs (2%) in
the second experiment. This figure corresponds to that of the
first experiment (1.5%), where the choice of UserData for
corruption was random, not as deterministic as 50 out 450
of the second experiment.

HighWater is very much vulnerable to data corruption
(7 out of 50 runs). In 4 of the 9 runs, one or more com-
mitted transactions were missing. This can be the conse-
quence of the design fault found in the double failure case
or another design fault found in the checkpoint mechanism.
One of these 4 cases show severe inconsistency in user data
(marked by **”). Further analysis shows that this case had
consecutive node failures, i.e., after the first node crashed
and repaired itself, the counterpart node crashed and re-

www.manaraa.com

Error Type Repair | Online | Rep.not
Time repair | finished
(sec)
DBbuffer 124 315 116
NextLevelPointer | 160 22 26
UserData 0 0 0
KeyDescriptor 147 42 5
AdmDescriptor 124 10 6
Blockld 110 40 10
NextPointer 143 19 5
NoOfRecords 134 43 6
NoOfBytesFree 66 1 0
HighWater 155 30 9

Table 3. Time taken to restore the replication
level, number of cases where the online repair
succeeded and not succeeded.

paired itself, before the occurrence of double failure. Since
this was the only case where consecutive node crash was
found, it is difficult to draw any conclusions, but it may in-
dicate an error propagation or some other design fault in the
recovery mechanism. Due to the non-repeatable nature of
the experiment, the fault could not be traced.

4.2. Efficiency of Recovery

Efficiency of recovery is characterized by the period of
time the system is in reduced fault tolerance level and the
performance degradation due to fault tolerance activities.

The period of time system is in reduced fault tolerance
level: This is the time the system runs without replication
after anode crash. Itis calculated as the time between a node
crash and a successful repair of it (or the spare). This pe-
riod is very crucial because if the functioning replica node
fails before the repair is finished, a double failure will oc-
cur. The longer the system is in a reduced fault tolerance
level, the higher the danger to get a double failure. Col-
umn 1 of Table 3 shows the period of time the system was
in a reduced fault tolerance level. NextLevel Pointer, High-
Water, KeyDescriptor, NextPointer, NoOfRecords, and Ad-
mDescriptor show long repair time, and the double failures
(Table 2) have occurred within these error types. The ex-
ceptions HighWater and AdmDescriptor indicate the non-
deterministic nature of events causing double failure, de-
pending on the transaction pattern and load, error propaga-
tion to the counterpart node, and the error detection mecha-
nisms.

Columns 2 and 3 of Table 3 shows the node failure cases
where the online repair was succeeded and not. The error
type NextLevel Pointer shows severe problems, having half
of its runs unable to finish the repair. Further tracing shows

Error Performance
Type Degradation
DBbuffer 0.121019
NextLevelPointer | 0.146497
UserData 0.0127389
KeyDescriptor 0.210191
AdmDescriptor 0.0764331
Blockld 0.146497
NextPointer 0.0764331
NoOfRecords 0.171975
NoOfBytesFree 0

HighWater 0.191083

Table 4. Performance degradation due to the
errors.

that 80% of the repair-not-finished cases in the first exper-
iment and 96% in the NextLevel Pointer indicated a design
fault in the repair mechanism. Due to this fault, the crashed
node and the spare got into a deadlock situation such that
none of them were able to complete the repair.

In two of the runs belonging to NextPointer error type,
the failure was masked by recovery even though the error
was not really removed. This dormant error had the poten-
tial to crash the process when being accessed nexttime. One
of the runs showed a design fault in the repair algorithm,
where the crashed and the spare node from the same disas-
ter unit both repaired themselves successfully, which should
not occur according to the replication semantics.

Performance degradation reflects the fault tolerance
overhead. Performance degradation is measured from the
clients’ point of view. Each run measures the number of
transactions succeeded per second (TPS). Average TPS for
faulty runs is calculated for each error type. This average is
compared with the average TPS of the 50 golden runs.

PerformanceDegradation prrorrype;, =

_ AverageTPSErrorType,
Averagel PSgoiden

The results are presented in Table 4. The repair activ-
ity generally has an adverse impact on performance. Af-
ter a node crash, the active counterpart node must help the
crashed node to recover in order to reestablish the fault
tolerance level. In addition to serving the usual TCs, the
active node must send the database image if necessary
and the changes occurred in the database after the node
crash, to the recovering node. This extra activity reduces
the TC throughput. As shown in Table 4, this is evident
in UserData, NoOfBytesFree, AdmDescriptor, and Next-
Pointer which have less error detection coverage, and hence,
less repair activity, and as a result, less throughput loss.

www.manaraa.com

On the contrary, KeyDescriptor, HighWater, NoOfRecords,
NextLevel Pointer, and Blockld have high detection cover-
age and repair activity and show high performance degrada-
tion. Variations like Blockld having 50 error detection has
14% throughput loss while KeyDescriptor having 48 error
detection has 21% throughput loss could have been caused
by the factors such as, the size of the database and the period
of time the crashed node was away at the time of the repair,
which are not tracked in the experiment.

In order to get a real life statistics, the performance
should be corrected to undermine the cost of fault injection
and executing the DBMS in the trace-mode where it writes
trace information regarding repair to a log file.

5. Summary, Conclusion, and Future Work

Faulttolerance ability of a replicated DBMS and fault im-
pact are evaluated in the presence of software errors corrupt-
ing data buffer area in the DBMS process’s shared mem-
ory. A generic fault injection method, extending the exist-
ing client interface, is used to inject errors in different data
structures of a DBMS. Data buffer area is chosen in this ex-
periment due to its crucial role ina DBMS.

Error detection and failure masking, together with the im-
pact of faults on integrity, performance, and availability are
evaluated. General corruption of the first experiment shows
that 61% of the 725 errors are detected. All detected errors
caused in node failures. All the node failures are masked
by hot standby replica node taking over, except in the 1.5%
double failure cases. The fault tolerance level is restored
successfully in 71% of the failure cases, but in 26% of the
failure cases, the repair was not finished. 91% of these
repair-not-finished cases are caused by a design fault in the
repair mechanism that put the repair in a deadlock situation.
In 1.5% of the total runs show user data corruption. Two de-
sign faults in repair mechanism cause 2 double failures. A
design fault in checkpoint mechanism and the one in repair
mechanism (mentioned above) caused integrity problems.
(Further, the study also identified another erroneous behav-
ior of the system regarding to repair.) Performance degrada-
tion due to fault tolerance activities is 12%.

General corruption did not give enough feedback about
1) the weak components in the system, which have to be
guarded in order to improve the fault detection and hence
fault tolerance and 2) the causal relationship between the
error source and the severity of the fault impact. There-
fore, a second experiment was conducted by corrupting
specific data components present in the data buffer area.
We identified components which are very sensitive and af-
fect database integrity (UserData, HighWater), availability
(NextLevel Pointer), and performance degradation (KeyDe-
scriptor).

The results from the first experiment can be used to get

an insight on fault tolerant DBMSs in general, while the re-
sults from the second experiment is more relevant to those
DBMSs which arrange the data in a B-tree structure, which
is the case with most of the traditional DBMSs. Further,
fault injection proved to be an efficient complementary val-
idation method. It provoked failure scenarios which other
traditional testing methods did not do. In our case, this lead
to trace 4 residual design faults in the recovery and check-
point mechanisms.

The findings suggest that error detection mechanism con-
nected to data buffer components needs an enhancement,
such as, a checksum or some kind of memory scrubbing in
order to guard the vulnerable components individually, or
collectively at block level, or block head level together with
record level.

A study similar to this is essential to evaluate the im-
provement on fault tolerance and tradeoff on performance
by these proposed error detection methods. It would also
be interesting to evaluate the dependability growth after the
disclosed design faults being corrected. Further, Using stan-
dard workloads like TPC-C [7] will make the results of the
study more interesting for a wider user community.

References

[1] S. Bratsberg, @. Gravlen, S. Hvasshovd, B. Munch, and
@. Torbjgrnsen. Providing a Highly Available Database by
Replication and Online Self-Repair. International Journal
of Engineering Intelligent Systems, 4(3):131-139, 1996.

[2] R. Chillarege and N. Bowen. Understanding Large System
Failures - A Fault Injection Experiment. Proc. 19th. Ann.
Int’'| Symp. Fault Tolerant Computing, pages 356—-363, 1989.

[3] J. Christmansson and R. Chillarege. Generation of an error
set that emulates software faults based on field data. In Proc.
26th. Ann. Int’l Symp. on Fault Tolerant Computing, 1996.

[4] J. Gray and A. Reuter. " Transaction Processing: Concepts
and Techniques’ . Morgan Kaufmann Publishers Inc., 1993.

[5] M.-C. Hsueh, T. Tsai, and R. lyer. Fault Injection Techniques
and Tools. Computer, April 1997.

[6] S. Hvasshovd, @. Torbjernsen, S. E. Bratsberg, and P. Ho-
lager. The ClustRa Telecom Database: High Availability,
High Throughput and Real Time Response. In Proceedings
of the 21st VLDB Conference, Zurich, 1995.

[7] J.Gray, editor. ” The BenchmarkHandbookfor Databaseand
Transaction Processing Systems’ . Morgan Kaufmann Pub-
lishers Inc., 1991.

[8] I. LeeandR. lyer. Faults, Symtoms, and Software Fault Tol-
erance in the Tandem GUARDIAN Operating System. Proc.
FTCS-23, pages 20-29, 1993.

[9] W. T. Ng and P. M. Chen. Integrating Reliable Memory in
Databases. Proc. of the 23rd VLDB Conference, 1997, 1997.

[10] M. Sullivan and R. Chillarege. Software Defects and their
Impact on System Availability- A Study of Field Failures in
Operating Systems. Proc. FTCS-21, pages 2-9, 1991.

[11] M. Sullivan and R. Chillarege. A Comparison of Software
Defects in Database Management Systems and Operating
Systems. Proc. FTCS22, pages 475-484, 1992.

www.manaraa.com

